水库抽样
问题描述
Input:一组数据
Output:这组数据的K个均匀抽样
- 要求:
- 扫描一次
- 空间复杂度o(k)
- 扫描到前n个数字时,保存当前数据的均匀抽样
- 实现
收到第i个元素t时,以k/i的概率随机替换抽样数组ans[]中的元素
- 证明
均匀:
$$\frac{k}{i}\times(1-\frac{1}{i+1})\times(1-\frac{1}{i+2})\times\dots\times(1-\frac{1}{n})=\frac{k}{n}$$
实现代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
int random(int min ,int max)
{
return (min+(rand()%(max-min+1)));
}
int main()
{
srand(unsigned(time(0)));
int k;
int i;
cout << "Input k:" ;
cin >> k;
double *ans = new double[k+1];
double input;
cout << "Input k numbers:" << endl;
for(i = 1;i <= k; ++i)
{
cin >> ans[i];
}
cout << "Input stream numbers:(q to quit)" << endl;
while(true)
{
int j = random(1,i);
if(!(cin >> input)) break;
if(j <= k)
ans[j] = input;
//output
cout << "Ans :" ;
for(int p = 1;p < k; ++p)
cout << ans[p] << ",";
cout << ans[k] << endl;
i++;
}
delete [] ans;
return 0;
}
|
平面图直径
问题描述
Input:m个点的平面图,任意两点的距离储存在矩阵D中。
- 输入大小n = m^2
- 最大的$D_{ij}$为图的直径
- 点之间距离满足三角不等式
Output:该图的直径和距离最大的$D_{ij}$
- 要求:
- 运行时间o(n)
- 实现
- 任意选择$k\leq m$
- 选择使得$D_{kl}$最大的l
- 输出$D_{kl}$和(k,l)
- 证明
- 近似比
$$D_{ij}\leq D_{ik} + D_{kj}\leq D_{kl} + D_{kl}\leq 2D_{kl}$$
- 运行时间 $O(m)=O(\sqrt{n})=o(n)$
代码实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
int random(int min ,int max)
{
return (min+(rand()%(max-min+1)));
}
int main()
{
srand(unsigned(time(0)));
int m;
cout << "Input m:";
cin >> m;
int **ans = new int * [m];
for(int i = 0; i < m; ++i)
{
ans[i] = new int[m];
}
cout << "Input martrix:" << endl;
for(int i = 0; i < m; ++i)
{
for(int j = 0;j < m; ++j)
{
cin >> ans[i][j];
}
}
int line = random(0,m-1);
int maxd = 0,maxi;
for(int i = 0;i < m; ++i)
{
if(ans[line][i] > maxd)
{
maxd = ans[line][i];
maxi = i;
}
}
cout << "MAX_D:" << maxd << ", D_(i,j):(" << line << "," << maxi+1 <<")" <<endl;
for(int i = 0; i < m; ++i)
{
delete [] ans[m];
}
delete [] ans;
return 0;
}
|